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Abstract

Effective communication enables agents to collaborate to achieve a goal. Understanding the process of communication
emergence allows us to create optimal learning environments for multi-agent settings. Thus far, most of the research in
the field explores unsituated communication in one-step referential tasks. These tasks are not temporally interactive and
lack time pressures typically present in natural communication and language learning. In these settings, reinforcement
learning (RL) agents can successfully learn what to communicate but not when or whether to communicate. Convergence is
slow and agents tend to develop non-efficient codes, contrary to patterns observed in natural languages. Here, we extend
the literature by assessing emergence of communication between RL agents in a temporally interactive, cooperative
task of navigating a gridworld environment. Moreover, we situate the communication in the task—we allow the acting
agent to actively choose between (i) taking an environmental action and (ii) soliciting information from the speaker,
imposing an opportunity cost on communication. We find that, with situated communication, agents converge on a
shared communication protocol more quickly. The acting agent learns to solicit information sparingly, in line with the
Gricean maxim of quantity. In the same multi-step navigation task, we compare real-time to upfront messaging. We
find that real-time messaging significantly improves communication emergence , suggesting that it is easier for agents to
learn to communicate if they can exchange information when it is immediately actionable. Our findings point towards
the importance of studying language emergence through situated communication in multi-step interactions.
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1 Introduction
Communication is a key skill for collaboration and hence largely beneficial in multi-agent settings. As humans, we
share well-established communication protocols that have evolved over thousands of generations—shaped by functional
pressures, such as time and articulation effort—to suit the needs of our daily tasks and to take advantage of our cognitive
and physical capabilities. As an example, natural languages are known to be compositional, making them easier to
learn and use [Kirby and Hurford, 2002]. Similarly, when we communicate, we are known to follow Grice’s maxim of
quantity—we try to be as informative as possible, giving only as much information as is needed [Grice, 1975]. If future
artificial systems are to cooperate with humans, it will be beneficial for their communication protocols to follow these
patterns. Understanding communication emergence among artificial agents will allow us to create optimal learning
environments for multi-agent settings and supports the design of machines that will work well with each other and with
people [Crandall et al., 2018, Steels, 2003].

With a recent increase in available computational power, the field has seen a lot of progress [Wagner et al., 2003,
Lazaridou and Baroni, 2020]. Thus far, emergent communication has largely been studied in one-step referential
games, such as the Lewis signalling task [Chaabouni et al., 2019, Li and Bowling, 2019, Lazaridou et al., 2018]. This
type of learning environment is known to successfully enable language development [Kirby and Hurford, 2002] but
does not allow agents to accelerate the learning process through back-and-forth interaction. In line with prior
work [Evtimova et al., 2018] , we show that multi-step interactions can be beneficial for communication emergence, both
in terms of agents’ ability to converge to a collaborative solution and the time needed for convergence.

In most studies, the emerged language structures are analyzed for shared commonalities with natural languages, such
as compositionality or encoding efficiency. Although desired, it is nontrivial for such properties to emerge sponta-
neously between artificial agents [Kottur et al., 2017]. For instance, artificial agents tend towards an anti-efficient en-
coding [Chaabouni et al., 2019]. This likely happens because in the Lewis signalling task, as well as in other simulated
environments [Cao et al., 2018], agents have no incentive to be concise. In our approach, we show it is possible to obtain
sparse communication by providing the agent with an action-communication trade-off, in line with the idea that reward
is enough to shape language [Silver et al., 2021].

In our work, we explore the emergence of communication in a cooperative multi-step navigation task. Importantly, we
situate the communication in the environment—we allow the acting agent to actively choose between (i) taking an action
to move through the maze and (ii) soliciting information from the speaker. Our contributions are two-fold: (1) we study
the emergence of situated communication and how it affects the communication protocol, and (2) we explore the effect of
multi-step interactions on communication emergence.

2 Experimental Setup
The environment. We define a cooperative navigation task as a Markov Decision Process (MDP) with two reinforcement
learning (RL) agents. The environment is set up as a pixel-based gridworld (7 by 7 cells). As illustrated in Figure 1, the
maze includes 3 T-junctions, each allowing a right and left turn. Features of the world are represented with colors: walls
are black, the maze is white, the agent is green, and the target is blue. The features are encoded with binary vectors.

The agents. There are two agents, a speaker and a listener (i.e. acting agent). The listener is embedded inside the
gridworld and can take actions to move between cells. The action space of the listener spans 5 actions [move up, move
down, move right, move left, stay in place]. The listener’s observation consists of the environmental view (if any)
concatenated with the message from the speaker. We test the listener under two conditions: (1) with no visibility, where
the listener’s observation consists solely of the speaker’s message, and (2) with partial visibility, where the listener can
see the 3 pixels directly in front of them. The second variant gives the listener environmental context to take actions
without needing to rely solely on communication. The speaker does not reside within the gridworld and cannot take
environmental actions (i.e. navigate the maze) but instead can communicate information to the listener. The message
space of the speaker spans 5 symbols [0, 1, ..., 4]. At each timestep, the speaker can see the entire gridworld, including
the location of the agent and the location of the goal. The speaker’s view of the world map is rotated to align with
the direction that the listener is facing. In our experiments, we test agents with and without memory. Agents without
memory have to rely only on their current observations to generate messages or pick actions. Agents with memory have
an internal representation of the history of an episode—they can use accumulated knowledge from prior timesteps to
make decisions in the current timestep.

Agent architectures. The speaker and the listener share the same architecture without sharing weights or gradient val-
ues. They both have a 2-layer Convolutional Neural Network (CNN) that generates an 8 to 32 bit representation of the
environment. In the case of the listener, this representation of the environment gets concatenated with the message re-
ceived from the speaker. In both cases, the vector gets passed into a fully connected layer that generates the agent’s action
(a move or a message). Agents with memory have an additional single-layer LSTM [Hochreiter and Schmidhuber, 1997]
after their fully connected layer. We train the agents using neural fitted Q learning [Riedmiller, 2005], with an Adam
optimizer [Kingma and Ba, 2015] and Qt(λ) where λ = 0.9 and γ = 0.99. During training, agents use an ε-greedy policy
with the exploration rate set as ε = 0.01.
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Figure 1: Experimental setup and a walk-through of an example episode with situated communication. In the maze on the left, stars
indicate possible goal locations. To the right, we visualize an example episode of an active listener with partial visibility. The listener
learns to solve the task optimally, deciding to stay and ask for information when at a junction (twice during the episode).

The task. The goal of the agents is to cooperate so that the listener reaches the target. In each experimental episode, both
agents receive a reward R = 1 if the listener reaches the target before the episode terminates. Episode timeout is set to
100 steps. The goal locations are randomly assigned to one of 4 corners in the T-maze, as indicated with stars in Figure 1.
In each episode, the listener agent starts from the bottom middle cell. We evaluate agent performance using 3 metrics:
(1) task success (via a mean return per episode), (2) optimality of task solution (via a normalized reward per step), and
(3) communication sparsity (via the number of asks per episode).

Communication modes. We compare three modes of communication: (1) real-time messaging with a passive listener,
(2) real-time messaging with an active listener, and (3) upfront messaging with a passive listener. In mode 1, the speaker
generates a 1-token message at every timestep and the message gets broadcasted to the listener before they choose an
action. The speaker has to reason about both the content and timing of their message, deciding both what and when
to communicate. In mode 2, we implement real-time messaging with an active listener. Here, the message is only
broadcasted to the listener after they ask for information. The active listener can solicit to receive information in the next
timestep by choosing to stay in place at the current timestep. The active listener has to learn whether to communicate at
all. In mode 3, the speaker generates a 1-, 2-, or 3-token message at the beginning of each episode and that message gets
broadcasted to the listener at each timestep throughout the episode.

We define the communication in mode 1 and 3 as unsituated—it is free and guaranteed to the agent at every timestep.
There is no opportunity cost to communication. The communication in mode 2 is situated—we allow the acting agent to
actively choose between (i) taking an environmental action and (ii) soliciting information from the speaker. As a result,
the active listener experiences an opportunity cost to communication. They have to forego a move in the environment in
order to obtain information from the speaker and make an informed decision.

Experimental parameters. For each experiment, we run a hyperparameter sweep over learning rates of the speaker and
listener α = [10−5, 10−6, 10−7] and over the size of the environmental representation s = [4, 8, 16, 32]. We run the simu-
lation with each hyperparameter setting with 10 different random seeds. In the figures, we present the best performing
agent pair from our hyperparameter sweep and/or the mean over the 10 replicas with the same hyperparameters as the
best performing pair. When we plot metric means, we include the standard error of the mean.

3 Results
We start by generating a baseline for the task. Experiments confirm that without communication agents are unable to
reliably solve the task. Under partial visibility, agents without communication can succeed in the task with a mean return
of ≈ 0.25 per episode. With memory, baseline performance improves. However, due to the random location of the target,
the listener cannot consistently solve the task in an optimal number of steps, converging to a normalized reward per step
of ≈ 0.45. When allowed to communicate, all agents in the T-maze environment learn to solve the task and best agent
pairs find an optimal solution, as visualized with the grey line in Figure 2.

The pressure of time in a multi-step interaction can incentivise sparse communication. In the first set of experiments,
we evaluate the impact of situated communication on language emergence. Figure 1 shows a step-by-step example
episode for an active listener with partial visibility. Under the partial visibility condition, information solicitation takes
place mostly at the junctions, where the acting agent has a choice between two viable environmental actions. The active
listener can learn to near optimally solicit information, asking ≈ 9.76 and ≈ 2.06 times per episode under the two
visibility conditions, respectively.

In Figure 2 on the left, we illustrate the learning curves of the best performing agent pairs. Note that the active listeners
ask for information frequently at the beginning of the interaction and gradually less over time. This suggests that agents
initially have opportunities to align on a protocol. Over time, listeners learn when and whether to solicit information as
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Figure 2: Best performing pairs of agents with an active listener. Under all conditions (with/without memory and with/without
visibility) agents learn to solve the task via the shortest path. Listeners without memory learn to query the speakers in the optimal
number of asks (once per step when the listener has no visibility and once per junction when the listener sees environmental context).
Listeners with memory persist to ask for information when it is immediately actionable (instead of once at the beginning of an episode).

communication comes with a cost. We also observe that the best performing agent pairs with an active listener converge
to an optimal solution faster than the best performing agent pairs with a passive listener. The results suggest that situated
communication not only allows agents to learn a sparse communication protocol, in line with the Gricean maxim of
quantity, but also has a positive impact on convergence speed.

The active listener exhibits a preference for just-in-time communication. Interestingly, when we test situated commu-
nication between agents with memory, agents continue to ask for information at the junctions (note the bottom heatmap
in Figure 2). This is non-obvious—given memory, the active listener could ask for information at any point in the maze. In
fact, if the agent were to be optimally sparse, they could (1) ask for information only once at the beginning of an episode,
(2) receive a message encoding the address of the target, and (3) follow the relevant policy from memory. Instead, the
active listener with memory learns sparse communication relative to a passive listener but they do not achieve the the-
oretically maximal sparsity, continuing to ask for information at the junctions when it is immediately actionable. This
result suggests that it may be easier for agents to succeed at the task when they can control the timing of communication.

Real-time communication improves language emergence compared to upfront messaging. In our final experiment,
we compare the real-time communication protocol (mode 1) with upfront messaging (mode 3). In both scenarios, the
theoretical capacity of the communication channel allows the agents to communicate the necessary information, whether
the agents choose to communicate directions, e.g., ‘turn right’, or a goal address, e.g., ‘top left corner’. With upfront
messages of length 1, 2, and 3, the speaker has 5, 25, or 125 unique messages available for communication, respectively.

With both real-time and upfront messaging, agents succeed in establishing a successful communication protocol when
the listener has partial visibility—they converge to a mean return of 1 per episode. With no visibility for the acting agent,
agent pairs with upfront messaging do not succeed at solving the task. Moreover, the real-time agents are more likely
to converge to an optimal solution, being able to solve the T-maze task in 9 moves. With 1 upfront token, even the best
agents learn to at-best solve the task in 12 steps. These agents seem to reliably learn unique messages to encode the
action required at the first turn or the right/left part of the address, but they do not establish a unique encoding for the
top/bottom portion of the address, as visible in the top heatmap in Figure 3. With 3 upfront tokens, the best agent pair
agrees on 4 distinct symbols to encode the 4 possible goal locations. However, convergence is slow and on average agent
pairs perform less optimally than under the real-time communication paradigm. We hypothesize that there are benefits
to allowing communication to emerge from multi-step interactions. Our findings suggest that it is easier for agents to
learn to communicate if they can exchange information when it is immediately actionable.

4 Conclusion & Discussion
Our results point towards the importance of studying emergent communication in multi-step interactions. The interac-
tive aspect of communicating over time enables agents to learn both what and when to communicate. It improves overall
task performance and speeds up convergence to an optimal solution. Secondly, we find that there is value in situating the
communication in the task and giving the listener agency to choose whether to communicate at all. In this way, we allow
the reward to shape the emergent communication protocol to exhibit properties of natural languages, such as sparsity.
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Figure 3: Comparison of upfront and real-time messaging; agents have memory. Real-time messaging improves convergence on a
successful communication protocol. With upfront messaging, agents learn to solve the task before episode timeout when the listener
has partial visibility. However, convergence is slow and agents are unlikely to solve the task in the optimal number of steps.

Our ongoing work will expand this idea and situate both the speaker and listener in the environment, allowing both
agents to communicate and take actions in the gridworld environment.
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